
Vibrations in glasses and Euclidean random matrix theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 2167

(http://iopscience.iop.org/0953-8984/14/9/306)

Download details:

IP Address: 171.66.16.27

The article was downloaded on 17/05/2010 at 06:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/9
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 2167–2179 PII: S0953-8984(02)31168-8

Vibrations in glasses and Euclidean random matrix
theory

T S Grigera1,2, V Martı́n-Mayor1,2, G Parisi1,2 and P Verrocchio3,4
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Abstract
We study numerically and analytically a simple off-lattice model of scalar
harmonic vibrations by means of Euclidean random matrix theory. Since the
spectrum of this model shares the most puzzling spectral features with the high-
frequency domain of glasses (non-Rayleigh broadening of the Brillouin peak,
boson peak and secondary peak), Euclidean random matrix theory provides a
single and fairly simple theoretical framework for their explanation.

1. Introduction

The high-frequency (ω > 1 THz) region in vibrational spectra of amorphous systems is related
to density fluctuations whose size is comparable to the typical distance between particles.
Whereas in ordered systems those excitations (phonons) persist up to momenta of about the
Debye momentum, the fate of excitations of microscopical size in disordered systems is still
quite a puzzling issue, both from the theoretical and experimental points of view.

Recent high-resolution inelastic x-ray scattering (IXS) and neutron scattering techniques
have made this region—where the exchanged external momentum p is comparable to p0,
namely the momentum where the static structure factor has its first maximum—accessible to
experiment [1–14]. A related issue is the influence of the high-frequency dynamics of glasses
on specific heat experiments in the 1–100 K range. A number of facts have emerged from the
experiments:

(1) The dynamic structure factor S(p, ω) has a Brillouin-like peak for momenta up to
p/p0 ∼ 0.5. This inelastic peak is due to the interaction of the external photon (or
neutron) with some excitation of the system. A very controversial issue is the propagating
nature of these excitations [15]. Furthermore a secondary peak at frequencies smaller
than the Brillouin one develops for larger momenta [16, 17], becoming dominant for
p/p0 ∼ 0.5.
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(2) The dependence of the Brillouin peak width 
 on the momentum p has been described
by means of the following scaling law:


 ∝ pα. (1)

The broadening must generally be ascribed to interaction between the excitations and to
the disorder of the system. However, the details are still unexplained and two remarkable
facts arise. First, there seems to be quite general agreement about the fact that 
 is
not affected by changes in temperature, ruling out the hydrodynamic explanation for the
broadening. Second, at small enough momenta (e.g. light scattering) α is undoubtedly
∼2, also ruling out Rayleigh scattering.

(3) Beyond the well-known anomalous linear dependence on T at the lowest temperatures
of the specific heat (reproduced by the two-level model [18]), another deviation from
the Debye T 3 law is found at slightly higher temperatures. The specific heat divided
by T 3 shows a peak near 10 K [19]. This peak points to the existence of an excess of
vibrational states at frequencies ω ∼ 1 THz, which shows as a peak in the plot of g(ω)/ω2

(g(ω) being the vibrational density of states, as obtained by Raman or inelastic neutron
scattering). Since the scattering intensity at the peak scales in temperature with Bose
statistics, the peak has become known as the Boson peak (BP). Two features of the BP
should be remarked upon. First, the peak frequency ωBP is several times smaller than any
natural frequency scale, like the Debye frequency or the band edge. Moreover, where good
data for the dispersion relation ω(p) (determined from the position of the Brillouin peak
of the dynamic structure factor, which probes only longitudinal modes) are available, it
has been checked thatω(p) is still a linear function of the momentum p atωBP [2,3,5,10].
Second, although fewer experimental data are available, it seems to be the rule that ωBP

shifts to lower frequencies on heating [11–13] (except for silica [11, 14]). In silica the
evolution of the BP upon increasing the density has been studied experimentally [20] and
in simulations [21]. In close agreement with our most recent theoretical results [22], it
was found that ωBP shifts to larger frequencies and the BP loses intensity when the density
grows. The BP has also been identified with the secondary peak in the dynamic structure
factor at high exchanged momentum, both experimentally [16] and in simulations [17].

A number of basic insights into the spectral properties of glasses have been obtained by
means of molecular dynamics simulations [23–30] on systems such as argon, silica and water.
Let us point out here the fact that, in the glass phase, the high-frequency dynamics can be
understood in the framework of the harmonic approximation (see, however, the work on soft
potentials [31] for a dissenting view).

We still lack a universally agreed upon theoretical interpretation of the propagation of
phonons in topologically disordered systems. The BP has been variously interpreted as
arising from mixing of longitudinal and transverse modes [10, 17, 25, 32], hybridization of
optical and acoustic modes [24], a combination of level repulsion from disorder and van
Hove singularities [29], an associated mechanical instability [26, 27], the presence of a Ioffe–
Regel crossover at ωBP [4, 33], or the scattering of sound waves with localized anharmonic
vibrations [14, 31].

Here we would like to describe a theoretical approach relying on the study of the statistical
properties of Euclidean random matrices (ERM) [34] providing a coherent framework which
explains the broadening of the Brillouin peak and the origin of both the Boson and secondary
peaks.

The organization of the paper is as follows. Section 2 defines our model and gives some
technical details on the perturbative solution and resummation. Sections 3 and 4 discuss the
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more general theoretical results, while in section 5 a special interparticle potential is studied,
comparing theoretical and simulation results. Section 6 summarizes our conclusions.

2. Real systems and ERM theory

We are considering the spectral properties of a system whose particles oscillate around
disordered positions. For the sake of simplicity we shall consider only the scalar case, where
all the displacements are collinear. In such a system the spring constants are a deterministic
function, depending only on the distances of the particles’ rest positions, the Hamiltonian
being:

H = 1
2

∑
i,j

φiMi,jφj (2)

where M is a matrix of the form

Mij ≡ δij

N∑
k=1

f (xi − xk) − f (xi − xj ) i, j = 1, 2 . . . , N. (3)

If we think of the glass as a disordered harmonic solid, the matrix M is nothing but the Hessian
matrix of the system where the function f (r) is the second derivative of the pair potential.

Hence the disorder in the interactions is due to reasons of topology, namely the disor-
dered position of particles. As in those topologically disordered systems one cannot split the
interactions (spring constants) into an ordered part plus a disorder-dependent correction, a
new theoretical framework involving so-called Euclidean random matrices had to be intro-
duced [34]. The quantity to be directly compared with scattering experiments is the dynamic
structure factor S(p, ω), which at the one-excitation level can be computed by means of [35]

S(1)(p, ω) = −2 kBT p2

ωπ
lim
η→0+

ImG(p,ω2 + iη) (4)

having introduced the resolvent

G(p, z) ≡ 1

N

∑
jk

exp[ip · (xeq
j − x

eq
k )][(z − M)−1]jk. (5)

The overbar has the meaning of an average over the disordered equilibrium positions.
As a matter of fact, we are assuming that the vibrational spectra of amorphous systems are a
self-averaging quantity, hence they should not depend on the given disorder configuration.

A straightforward method for computing the resolvent is to write it as the sum of a
geometric series, whose Rth element is

MR(p) = 1

N

∑
k0,k1...kR

eipxk0

(
δk0,k1

∑
z1

f (xk0 − xz1) − f (xk0 − xk1)

)

× · · · ×
(
δkR−1,kR

∑
zR

f (xkR−1 − xzN ) − f (xkR−1 − xkR )

)
e−ipxkR . (6)

Letting f̂ (p) be the Fourier transform of f (r), without any loss of generality the resolvent can
be written as

G(p, z) = 1

z − ε(p) − �(p, z)
(7)

ε(p) = ρ[f̂ (0) − f̂ (p)] (8)

where the self-energy � describes the interactions between the phonons and the disorder.
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The simplest case arises when all the particles are randomly placed without any correlation.
In that situation, using P [x] = (1/V )N as the probability distribution of quenched variables,
it is possible to build a perturbative approach where the leading term is exact when the density
ρ is infinite and the next-to-leading terms are proportional to powers of 1/ρ [35]. Furthermore
by means of well-known resummation techniques, the 1/ρ correction has been exploited in
order to obtain an integral equation for the self-energy [27]:

�(p, z) = 1

ρ

∫
dDq

(2π)D
[ρ(f̂ (q) − f̂ (p − q))]2

z − ε(q) − �(q, z)
(9)

whose solution takes into account a given class of terms of any order. However, the quenched
position in glasses (and amorphous systems in general) are highly correlated. Let us sketch a
simple approximation dealing with the correlated case. Let g(R)(x1, . . . , xR) be the R-point
correlation function related to an arbitrary probability distribution P [x]

g(y1, . . . , yR) ≡
N∑

j1,...,jR

δ(xj1 − y1) · · · δ(xjR − yR). (10)

Hence, the average on the position of the particles is

MR(p) = 1

V R

∫ R∏
i

ddxig
(R)(x1 . . . xR)M

R(p). (11)

Although computation using the full correlation function would be exceedingly difficult,
some progress can be made by using the so called superposition approximation

g(x1 . . . xR+1) = g(x1 − x2)g(x2 − x3) · · · g(xR − xR+1) (12)

where the pair correlation function is used to take into account the correlation of the position
of the particles. The superposition approximation can be embedded in our calculation if we
make the substitution [35]

f (r) → g(r)f (r). (13)

This is rather important, because for typical applications the function f , being badly divergent
at short distances, does not have a Fourier transform. On the other hand, the function g(r)

typically tends exponentially to zero at the origin, thus taking care of the algebraic divergence
of f (r).

Let us point out that in the one-excitation approximation the following relationship
between the DOS and the dynamic structure factor holds [35]:

g(ω) = ω2

kBTp2
S(1)(p → ∞, ω). (14)

As at very high frequencies the one-excitation approximation does not hold, and many-
excitation contributions should be taken into account, the reliability of equation (14) in
describing real systems is a very interesting question.

3. Brillouin peak

The following connections between the main features of the dynamical structure factor and
the self-energy are established:

• The ‘bare’ dispersion relation ε(p), which would give the position of the peak in the
elastic medium limit, is renormalized by the real part of the self-energy �′(p, z). This
gives ωrenorm(p), the position of the maximum of the structure factor in the frequency
domain. Let us note that ωrenorm(p) is certainly linear for small p, as expected.
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• The imaginary part �′′(p, z) computed at the position of the peak ω = ωrenorm(p) gives
the width, 
(p), of the S(1)(p, ω) by means of

�′′(p, ωrenorm(p)) = ωrenorm(p)
(p). (15)

Here we want to show that equation (9) provides a model-independent derivation of the
exponent α in the scaling law (1). Indeed, contribution of the large q to the imaginary part of
the integral in equation (9) is, because of (14)

�′′
0 (p, z) = −πρgλ(λ)

∫
dDq

(2π)D
(f̂ (q) − f̂ (p − q))2 (16)

where gλ(λ) is the density of states in the domain of eigenvalues (λ = ω2, gλ(ω
2) = g(ω)/2ω).

If the spectrum is Debye-like we have gλ(λ) ∝ λ0.5, and it is straightforward to show that (16)
is proportional to ωrenorm(p) p2. Then the relation (15) implies the scaling


0(p) ∝ p2 (17)

irrespective of the function f (r). Clearly this is only the contribution of large q to the integral,
but it has been shown that it indeed controls the peak width at small p [27]. Hence the ERM
theory yields the correct asymptotic behaviour at very low momenta of peak broadening.

4. The Boson peak

Exploiting the relation (14), it is possible to obtain from (9) an integral equation even for the
DOS. As a matter of fact, defining G(z) = G(p = ∞, z), the DOS turns out to be

g(ω) = −2ω

π
Im G(ω2 + i0+) (18)

G being the solution of the following integral equation:

1

ρG(z) = z

ρ
− f̂ (0) − AG(z) −

∫
d3q

(2π)3
f̂ 2(q)G(q, z) (19)

where A = (2π)−3
∫
f̂ 2(q) d3q. With this equation, one needs to know the resolvent at all

q to obtain the DOS, due to the last term on the rhs. This can be done by numerically
solving the self-consistent equation of [27], but here we perform an approximate analysis
which is more illuminating. The crudest approximation is to neglect this term, in which case
equation (19) is quadratic in G, and one easily finds a semicircular DOS, with its centre at
ω2 = ρf̂ (0) and radius 2

√
ρA. This spectrum is the glass analogue of a van Hove singularity:

indeed, when ρ → ∞, the spectrum is made of plane waves, with the dispersion relation
ω2(p) = ρ(f̂ (0)− f̂ (p)) [34,35] (a continuous elastic medium). ω(p) saturates for large p at
ω2 = ρf̂ (0), yielding an enormous pile-up of states which causes the DOS to be concentrated
at this value [34]. At finite ρ, density fluctuations of the xeq are present which act as a
perturbation that splits this degeneracy, and yields the semicircular part of the spectrum at high
frequency. But the semicircular spectrum misses the Debye part, and a better approximation
is needed. So we substitute G in the last term on the rhs by the resolvent of the continuum
elastic medium G0(z, p) = (z−ω2(p))−1. This is reasonable because the f 2(q) factor makes
low momenta dominate the integral, and due to translational invariance G(z, p) ≈ G0(z, p)

in this region [35]. We shall be looking at small ω, so to a good approximation∫
d3q

(2π)3
f̂ 2(q)G0(q, z) ≈ − 1

ρ
B − i

ρf̂ 2(0)

4πc3
ω (20)
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where the sound velocity is c =
√
ρf̂ ′′(0)/2 andB > 0. Then equation (19) is again quadratic

in G, and can be solved to give

G(ω + i0+) ≈ ω2 − ρf̂ (0) + B + iρf̂ 2(0)ω/4πc3

2ρA

×
(

1 −
√

1 − 4ρA

(ω2 − ρf̂ (0) + B + iρf̂ 2(0)ω/4πc3)2

)
. (21)

We have two limiting cases. At high densities and low frequencies (ρf̂ (0) � ω2, B, 2
√
ρA),

i.e. when the semicircular part of the DOS does not reach low frequencies, the square root can
be Taylor expanded, and one gets

g(ω) ≈ ω2

2πρc3
(22)

which is precisely Debye’s law. At small densities, on the other hand, the centre of the
semicircle (which is at ω2 = ρf̂ (0) − B) starts to be comparable to its radius (∝ √

ρ),
meaning that the states in the semicircle hybridize with the sound waves. Mathematically, the
instability arises when G(0) develops an imaginary part. This can only come from the square
root in equation (21), and it will happen for ρ < ρc, with ρc fixed by the condition

2
√
Aρc + B = ρcf̂ (0). (23)

Now when ρ � ρc and ω � ω∗ = 2πc3√ρcA/(ρcf̂
2(0)), the square root in equation (21)

behaves as √
D(ρ − ρc) − iω/ω∗ (24)

with D a positive constant. Here we can distinguish two regimes:

• when ω∗D(ρ − ρc) � ω � ω∗, the imaginary part of G is proportional to
√
ω, and thus

the DOS is g(ω) ∝ ω3/2.
• when ω � ω∗D(ρ − ρc) � ω∗, we have an imaginary part proportional to ω, and
g(ω) = ω2/(ω∗√ρcAD(ρ − ρc)). So the DOS is Debye like, but with a very large
prefactor, basically unrelated to the speed of sound.

It is therefore natural to identify ωBP with ω∗D(ρ − ρc), which can indeed be arbitrarily
small upon approaching the instability. Notice that the mechanical instability is a kind of phase
transition, for which the order parameter is −Im G(0). From equation (24) we see that this
order parameter behaves as (ρc − ρ)β , with β = 1/2, as in mean-field theories.

Since the behaviour of the propagator at high momentum does not strongly affect the
dispersion relation [27], we do not expect deviations from a linear dispersion relation at
ωBP. This has been checked either numerically or by numerically solving the self-consistency
equation given a particular choice for the function f (r) (see the numerical results section
below).

5. An example: the nearly Gaussian case

As previously stated, the model is completely defined when f and the distribution of x

are chosen. As discussed in section (2), a good approximation taking into account their
correlations is the replacement of the spring constants with effective ones. That amounts to
taking f (r) = g(r)v′′(r) instead of v′′(r).
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Figure 1. The Gaussian choice for f (q) compared with the Fourier transform of g(r)v′′(r) at
∼10 K, v(r) being the Lennard-Jones pair potential which is supposed to model the argon pair
interactions.

As a model for the effective spring constants, we shall consider the family of functions

fα(r) = (1 − αr2/σ 2)e−r2/2σ 2
(25)

where 0 � α � 0.2 (the upper bound has to be imposed in order to guarantee a positive sound
velocity). When α = 0 (Gaussian case), the Hessian is strictly positive. When α > 0 we have a
stable elastic solid at high densities, while at low enough densities typical interparticle distances
will be large enough to allow negative eigenvalues (imaginary frequencies). Therefore the
density ρ controls the appearance of a mechanical instability in this model. The counterpart
of that instability in real glasses is expected to be the mode-coupling transition. As a matter
of fact, that dynamical transition marks a change in the local topological properties of the
potential energy landscape [36]. As a consequence, there is a transition from a region where
the short time dynamics is ruled by a positive Hessian (high density) to one where an extensive
number of negative eigenvalues is found (low density).

The choice (25) may seem an oversimplification, too distant from any realistic case.
However, this is not actually so, at least for small momenta. For the sake of comparison
we can see in figure 1 the Fourier transform of the function g(r)v′′(r) for argon at very low
temperature (∼10 K) together with that of (25) in the purely Gaussian case. Since the Fourier
transform of our force has decreased by an order of magnitude by p0 = 2/σ we shall take this
as our p0 during the following discussion, and σ will be our unit of length.

Choosing two different values of α = 0, 0.1, we have computed the DOS of this model
numerically using the method of moments [37] with a box of side L = 128 σ (more than
5×105 particles), which allows us to reconstruct the spectrum up to very low frequencies, and
numerically solved equation (9) for several values of ρ, thus obtaining the structure factor and
the density of states.
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Figure 2. Top: dynamic structure factor for different values of the momentum, obtained both by
solving the integral equation derived from the cactus resummation (theory) and by using the method
of moments (simulations) in order to get the spectra of a vibrational off-lattice model with spring
constants given by (25) with α = 0. (For lower momenta, the comparison cannot be done due
to finite volume effects [35].) Bottom: the comparison between the theoretical and experimental
DOS g(ω) divided by the Debye contribution ω2 for the same model.

5.1. Theory versus simulations: dynamic structure factor

In figure 2 we show both the S(p, ω) for several values of the momentum (top) and g(ω)/ω2

(bottom) as obtained from equation (9) at ρ = 1, together with the results from numerical
simulations for the model (25) with α = 0.

Let us note that very good agreement with the numerical data is achieved. We also found
that the agreement is still satisfactory for densities down to ρ ≈ 0.6. Notice that even for
ρ = 1, the cactus resummation fails to reproduce the exponential decay at large frequencies
of the density of states.

Finally, let us look at the scaling of the width of the peak in the frequency domain. In
the inset of figure 3 we plot 
(p), obtained by means of (15). As expected, the p2 scaling is
found for very small momenta, which crosses over to a region where such a simple law as (1)
is not suitable for describing the real behaviour of the system.

Note that the region where the p2 scaling is actually found, i.e. p/p0 < 0.1, is quite
different from the region explored by x-ray and neutron scattering experiments, which rather
span the momentum range 0.1 < p/p0 < 0.5. It is worthwhile noting that the same conclusion
can be drawn using MCT for hard spheres [26].

5.2. Theory versus simulations: the Boson peak

In section 4 we showed that the main result of the ERM theory, namely the integral equation (9),
predicts the appearance of a peak of the function g(ω)/ω2 in the low-frequency region when
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Figure 3. The scaling of the broadening α of the Brillouin peak for the α = 0 model as a function
of the momentum p. Inset: the large q contribution 
0 as obtained by means of equations (15) and
(16) with respect to the total broadening 
.

Figure 4. Top: appearance of BP in the nearly Gaussian (α = 0.1) case when the density is
lowered down to the critical density ρc . The BP grows and shifts towards lower frequencies upon
decreasing the density. Bottom: g(ω)/ω2 and ω(p) for ρ = 0.25/σ−3 show that the BP lies in the
region of frequencies where the relation dispersion is still linear.

at low enough densities the system approaches a kind of phase transition where negative
eigenvalues (imaginary frequencies) begin to appear.
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Figure 5. Appearance of BP in the purely Gaussian (α = 0) case.

This is indeed what happens in our model (25) as shown by the DOS obtained with the
method of moments. In figure 4 (top) we show the DOS divided by ω2 at several densities for
α = 0.1. All these densities are well above the critical density, which for this model is difficult
to locate. Anyhow, at ρ = 0.05σ−3 imaginary frequencies are clearly found. As predicted, a
peak in g(ω)/ω2 arises on approaching the instability. As density is reduced, the peak grows
(relative to the Debye value, also plotted) and moves to lower frequencies. The maximum of
the peak always lies in the linear region of the dispersion relation (figure 4 (bottom)). Since
decreasing density plays the role of increasing temperature in our model, this peak reproduces
the experimental features of the BP.

Interestingly enough, the BP even shows up in the purely Gaussian model (see figure 5),
which is stable at all densities because α = 0. This case can be thought of as the situation
where the critical density is ρc = 0.

Since the appearance of the BP seems to be a low-density feature of vibrational spectra
and equation (9) is best suited to describe the high-density region correctly, only a qualitative
agreement between the theory and calculations can be achieved for the model (25).

This can be checked looking at figure 6, where we show the DOS obtained from the
self-consistent G(q, z), and the behaviour of −Im G(0) with density.

As stated before, the analytical solution compares reasonably well with the numerical
solution (figure 4) on a qualitative level, since it greatly overestimates ρc. There is still no
agreement, however, about the critical exponent β.

Finally, in figure 7 there is numerical confirmation that relation (14) in the DOS g(ω) and
infinite momentum limit of the dynamic structure factor S(1)(p, ω) (at the one-excitation level)
actually holds. Therefore we can conclude that the secondary peak identified in the dynamic
structure factor is nothing other than the BP.

6. Conclusions

In summary, we have applied the Euclidean random matrix approach to the study of high-
frequency excitations of glassy systems. The main mathematical result is a nonlinear
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Figure 6. Top: reduced DOS divided by ω2 for α = 0.1 at several densities, from the numerical
solution of the self-consistent equation of [27]. Bottom: order parameter (−Im G(0)) of the
mechanical instability phase transition versus density (points). The full curve is a fit to the predicted
behaviour 0(ρc − ρ)1/2, the fitting parameters being 0 and ρc.

0 1 2
ω

0

0.1

0.2

0.3

0.4

0.5

DOS
N=96
N=64
N=48

Figure 7. The function g(ω)/ω2 (labelled as DOS) and the function S(p, ω)/(kBTp
2) at different

values of the momentum p given by p = 2πN/σ for the α = 0.1 model at ρ = 0.25/σ−3.

integral equation whose solution provides the dynamic structure factor (at the one-excitation
approximation) and the density of states. Our approach has allowed us to theoretically confirm,
in a model-independent way, that the Brillouin peak of the dynamic structure factor corresponds
to the propagation of sound waves in the glass. At small momentum, the width of the
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Brillouin peak scales as p2. At higher p (actually, in the experimentally relevant range) a more
complicated law is found, but as shown in figure 3, the local logarithmic derivative is always
smaller than that corresponding to Rayleigh’s p4 law. At still larger exchanged momentum,
the dynamic structure factor starts to collapse onto the DOS. The frequency and width of the
Brillouin peak start to be independent of momentum. The experimentally identified secondary
peak in the dynamic structure factor corresponds to the BP in an intermediate-p regime in
which the Brillouin peak width and position stills depend on exchanged momentum.

Our theoretical approach is also able to cope with the BP. In the family of models that
we consider, there is a mechanical instability transition controlled by the density, as signalled
by the presence of imaginary frequencies. The vibrational density of states of our models
contains a BP which is the precursor of the instability transition. The BP in our model
shares the main features of the experimental BP: it appears for frequencies in the linear part
of the dispersion relation and it shifts towards arbitrarily low frequencies on approaching a
mechanical instability. We also reproduce qualitatively the behaviour of the silica BP when the
density changes [20,21] (a detailed theory of the temperature evolution of the silica BP should
consider its negative thermal dilatation coefficient). The BP is built from the hybridization
of sound waves with high-frequency modes (extended but non-propagating) that get softer
upon approaching the instability. The analogy of our instability transition in nature is the
topological phase transition [36] that underlies the dynamic crossover at the mode coupling
temperature of real glasses [38]. The precise nature of the high-frequency modes that hybridize
with the sound waves is most likely material dependent and non-universal: they could be
transverse [10, 17, 25, 32], optical [24] or even longitudinal modes as in our model. We
believe, however, that the basic mechanism for the formation of the BP uncovered in our
model is common to most (if not all) structural glasses. Yet all real glasses do have transverse
excitations, and one could ask about generic new features introduced by these modes. Work
is currently in progress to extend the ERM approach to include transverse displacements.
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